. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I COLLECT YOUR ISSUES

LIKE A MAGAZINE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Wednesday, September 02, 2009

John Mayor

How many ways can n objects be split among m kids, with the rule that each kid gets an integer amount of candy, x, where x > 0?

This many ways:





Oh damn.

It turns out that you could also just do (m + n -1) Choose (m-1).

Heh.

Christ on toast do I love math.

And yes I did put off all my other homework to spend 3 hours or more solving this problem because I like thinking about it, and also because my teacher will give me $1 if I get it right.

Peace out!

1 comment:

goobaloo said...

And, think of how much candy you can buy with that dollar to test your equation.